Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 9:

Speech Processing (Week 2)
October 6, 2010

1 Introduction

This is the second part of a two week experiment. During the we discussed basic
properties of speech signals, and performed some simple analyses in the time and frequency

domain.

This week, we will introduce a system model for speech production. We will cover some
background on linear predictive coding, and the final exercise will bring all the prior material
together in a speech coding exercise.

1.1 A Speech Model

Voiced Sounds

DT Impulse
Train
T Vocal Tract
x(n s(n
Te) @)H LTI, all-pole filter L»
Unvoiced Sounds T V(z) speech
White i G signal
Noise

Figure 1: Discrete-Time Speech Production Model

From a signal processing standpoint, it is very useful to think of speech production in
terms of a model, as in Figure 1. The model shown is the simplest of its kind, but it includes
all the principal components. The excitations for voiced and unvoiced speech are represented

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

http://engineering.purdue.edu/VISE/ee438L/lab9/pdf/lab9a.pdf

Purdue University: ECE438 - Digital Signal Processing with Applications 2

by an impulse train and white noise generator, respectively. The pitch of voiced speech is
controlled by the spacing between impulses, 7),, and the amplitude (volume) of the excitation
is controlled by the gain factor G.

As the acoustical excitation travels from its source (vocal cords, or a constriction), the
shape of the vocal tract alters the spectral content of the signal. The most prominent effect
is the formation of resonances, which intensifies the signal energy at certain frequencies
(called formants). As we learned in the Digital Filter Design lab, the amplification of certain
frequencies may be achieved with a linear filter by an appropriate placement of poles in the
transfer function. This is why the filter in our speech model utilizes an all-pole LTT filter.
A more accurate model might include a few zeros in the transfer function, but if the order
of the filter is chosen appropriately, the all-pole model is sufficient. The primary reason
for using the all-pole model is the distinct computational advantage in calculating the filter
coefficients, as will be discussed shortly.

Recall that the transfer function of an all-pole filter has the form
1
— 1
1-3F apz* (1)
where P is the order of the filter. This is an IIR filter that may be implemented with a

recursive difference equation. With the input G- z(n), the speech signal s(n) may be written
as

V(z)

s(n) = kz_: ags(n — k) + G - z(n) (2)

Keep in mind that the filter coefficients will change continuously as the shape of the vocal
tract changes, but speech segments of an appropriately small length may be approximated
by a time-invariant model.

This speech model is used in a variety of speech processing applications, including meth-
ods of speech recognition, speech coding for transmission, and speech synthesis. Each of these
applications of the model involves dividing the speech signal into short segments, over which
the filter coefficients are almost constant. For example, in speech transmission the bit rate
can be significantly reduced by dividing the signal up into segments, computing and sending
the model parameters for each segment (filter coefficients, gain, etc.), and re-synthesizing
the signal at the receiving end, using a model similar to Figure 1. Most telephone systems
use some form of this approach. Another example is speech recognition. Most recognition
methods involve comparisons between short segments of the speech signals, and the filter
coefficients of this model are often used in computing the “difference” between segments.

1.2 Synthesis of Voiced Speech

Download

Download the file and load it into the Matlab workspace using the load
command. This will load three sets of filter coefficients: A1, A2, and A3 for the vocal tract

http://www.ece.purdue.edu/VISE/ee438L/lab9/data/coeff.zip
http://www.ece.purdue.edu/VISE/ee438L/lab9/data/coeff.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 3

model in equations (1) and (2). Each vector contains coefficients {aj,as,...,a15} for an
all-pole filter of order 15.

We will now synthesize voiced speech segments for each of these sets of coefficients. First
write a Matlab function x=exciteV(N,Np) which creates a length N excitation for voiced
speech, with a pitch period of Np samples. The output vector x should contain a discrete-
time impulse train with period Np (e.g. [100---0100 ---]).

Assuming a sampling frequency of 8 kHz (0.125 ms/sample), create a 40 millisecond-
long excitation with a pitch period of 8 ms, and filter it using equation (2) for each set of
coefficients. For this, you may use the command

s = filter(1,[1 -A]l,x)
where A is the row vector of filter coefficients (see Matlab’s help on filter for details). Plot
each of the three filtered signals. Use subplot() and orient tall to place them in the
same figure.

We will now compute the frequency response of each of these filters. The frequency
response may be obtained by evaluating Eq. (1) at points along z = ¢/*. Matlab will
compute this with the command [H,W]=freqz(1,[1 -A],512), where A is the vector of
coefficients. Plot the magnitude of each response versus frequency in Hertz. Use subplot ()
and orient tall to plot them in the same figure.

The location of the peaks in the spectrum correspond to the formant frequencies. For
each vowel signal, estimate the first three formants (in Hz) and list them in the figure.

Now generate the three signals again, but use an excitation which is 1-2 seconds long.
Listen to the filtered signals using soundsc. Can you hear qualitative differences in the
signals? Can you identify the vowel sounds?

INLAB REPORT:
Hand in the following:

e A figure containing the three time-domain plots of the voiced signals.

e Plots of the frequency responses for the three filters. Make sure to label the frequency
axis in units of Hertz.

e For each of the three filters, list the approximate center frequency of the first three
formant peaks.

e Comment on the audio quality of the synthesized signals.

Purdue University: ECE438 - Digital Signal Processing with Applications 4

2 Linear Predictive Coding

The filter coefficients which were provided in the previous section were determined using a
technique called linear predictive coding (LPC). LPC is a fundamental component of many
speech processing applications, including compression, recognition, and synthesis.

In the following discussion of LPC, we will view the speech signal as a discrete-time
random process.
2.1 Forward Linear Prediction

Suppose we have a discrete-time random process {..., S_1, Sy, S1, S2, ...} whose elements have
some degree of correlation. The goal of forward linear prediction is to predict the sample S,
using a linear combination of the previous P samples.

P
Sn — Z akSn—k (3)
k=1

P is called the order of the predictor. We may represent the error of predicting S, by a
random sequence e,.

en = Sp—5S, (4)
P

€n = Sn_zaksnfk (5)
k=1

An optimal set of prediction coefficients ay, for (5) may be determined by minimizing the
mean-square error F[e2]. Note that since the error is generally a function of n, the prediction
coefficients will also be functions of n. To simplify notation, let us first define the following
column vectors.

a=[a ay---ap|’

Sn,P = [Sn—l Sn—Z T Sn—P]T

Then,
_ .)
Ele?] = E (Sn — Z akSn_k> (6)
i k=1
= E (Sn — aTSmp)Q] (7)
= F [STQL —28,a’S, p+a’s, p aTSn,p} (8)
= B[S} -2a"E[S,S,p] +a"E[S,rS],|a (9)

The second and third terms of equation (9) may be written in terms of the autocorrelation
sequence rgg(k,).
E[S,Sn-1] res(n,m — 1)
FE|[S,,S,,_ rss(n,n — 2
E[Snsnyp] _ [. 2] _ SS(.) =rg (10)

E[S,S,_p] rss(n,n — P)

Purdue University: ECE438 - Digital Signal Processing with Applications)

Sn—1Sn-1 Sn-1Sn—2 - Sn_1Sn_p
5 [Sn’PSz;P} o Sn_g:Sn_l Sn_g:Sn_g Sn_Q:Sn—P
Sn_p‘Sn_l Sn_I;Sn_z . Sn_p.Sn_p
rss(n—1,n—1) rss(n—1,n—-2) -+ rgs(n—1,n—P)
_ 7“55(71—:2,’”— 1) rss(n—:2,n—2) rgg(n—?,n—P) _R, ()
rgg(n—P,n—l) rgg(n—P,n—Z) rss(n—P,n—P)
Substituting into equation (9), the mean-square error may be written as
E [ei] =F [Sﬂ —2a’rg +a’Rga (12)

Note that while a and rg are vectors, and Rg is a matrix, the expression in (12) is still a
scalar quantity.

To find the optimal a; coefficients, which we will call a, we differentiate equation (12)
with respect to the vector a (compute the gradient), and set it equal to the zero vector.

VaE [e2] = —2rs + 2Rga = 0 (13)
Solving,
Rsé =Tg (14)
The vector equation in (14) is a system of P scalar linear equations, which may be solved
by inverting the matrix Ryg.
Note from (10) and (11) that rg and Rg are generally functions of n. However, if S,
is wide-sense stationary, the autocorrelation function is only dependent on the difference

between the two indices, rss(k,l) = rss(|k — []). Then Rg and rg are no longer dependent
on n, and may be written as follows.

Tgs<1)
rg = TSS(2) (15)
’I“SS(P)
[7“55(0) T55<1) T’SS(P— 1) 1
7‘55(1) TS,S‘(O) e TSS(P — 2)
Rg=| 7ss(2) res(l) oo res(P —3) (16)
I TSS(P— 1) T’SS(P—2) Tss(O)

Therefore, if S,, is wide-sense stationary, the optimal a; coefficients do not depend on n.
In this case, it is also important to note that Rg is a Toeplitz (constant along diagonals)
and symmetric matrix, which allows (14) to be solved efficiently using the Levinson-Durbin
algorithm (see [2]). This property is essential for many real-time applications of linear
prediction.

Purdue University: ECE438 - Digital Signal Processing with Applications 6

2.2 Linear Predictive Coding of Speech

An important question has yet to be addressed. The solution in (14) to the linear prediction
problem depends entirely on the autocorrelation sequence. How do we estimate the auto-
correlation of a speech signal? Recall that the applications to which we are applying LPC
involve dividing the speech signal up into short segments and computing the filter coefficients
for each segment. Therefore we need to consider the problem of estimating the autocorrela-
tion for a short segment of the signal. In LPC, the following biased autocorrelation estimate
is often used.

1 —m—
Tss(m =N Z)s(n+m), 0<m<P (17)
Here we are assuming we have a length N segment which starts at n = 0. Note that this

is the single-parameter form of the autocorrelation sequence, so that the forms in (15) and
(16) may be used for rg and Rg.

2.3 LPC Exercise

Download [TesT.ma

Write a function coef=mylpc(x,P) which will compute the order-P LPC coefficients for
the column vector x, using the autocorrelation method (“Ipc” is a built-in Matlab function,
so use the name mylpc). Consider the input vector x as a speech segment, in other words do
not divide it up into pieces. The output vector coef should be a column vector containing
the P coefficients {ay, as,...,ap}. In your function you should do the following:

1. Compute the biased autocorrelation estimate of equation (17) for the lag values 0 <
m < P. You may use the zcorr function for this.

2. Form the rg and Rg vectors as in (15) and (16). Hint: Use the toeplitz function to
form Rg.

3. Solve the matrix equation (14) for a.

To test your function, download [Test.mat], and load it into Matlab. This file contains
two vectors: a signal x and its order-15 LPC coefficients a. Use your function to compute
the order-15 LPC coefficients of x, and compare the result to the vector a.

INLAB REPORT:
Hand in your mylpc function.

http://www.ece.purdue.edu/VISE/ee438L/lab9/data/test.zip
http://www.ece.purdue.edu/VISE/ee438L/lab9/data/test.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 7

3 Speech Coding and Synthesis

Download [phrase.au

One very effective application of LPC is the compression of speech signals. For example,
an LPC vocoder (voice-coder) is a system used in many telephone systems to reduce the bit
rate for the transmission of speech. This system has two overall components: an analysis
section which computes signal parameters (gain, filter coefficients, etc.), and a synthesis
section which reconstructs the speech signal after transmission.

Since we have introduced the speech model in section 1.1, and the estimation of LPC
coefficients in section 2, we now have all the tools necessary to implement a simple vocoder.
First, in the analysis section, the original speech signal will be split into short time frames.
For each frame, we will compute the signal energy, the LPC coefficients, and determine
whether the segment is voiced or unvoiced.

Download [phrase.au]. This speech signal is sampled at a rate of 8000 Hz.

1. Divide the original speech signal into 30ms non-overlapping frames. Place the frames
into L consecutive columns of a matrix S (use reshape). If the samples at the tail end
of the signal do not fill an entire column, you may disregard these samples.

2. Compute the energy of each frame of the original word, and place these values in a
length L vector called energy.

3. Determine whether each frame is voiced or unvoiced. Use your zero_cross function from
the to compute the number of zero-crossings in each frame. For length
N segments with less than % zero-crossings, classify the segment as voiced, otherwise
unvoiced. Save the results in a vector VU which takes the value of “1” for voiced and
“0” for unvoiced.

4. Use your mylpc function to compute order-15 LPC coefficients for each frame. Place
each set of coefficients into a column of a 15 x L matrix A.

To see the reduction in data, add up the total number of bytes Matlab uses to store the
encoded speech in the arrays A, VU, and energy (use the whos function). Compute the
compression ratio by dividing this by the number of bytes Matlab uses to store the original
speech signal. Note that the compression ratio can be further improved by using a technique
called wvector quantization on the LPC coefficients, and also by using fewer bits to represent
the gain and voiced /unvoiced indicator.

Now the computed parameters will be used to re-synthesize the phrase using the model in
figure 1. Similar to your exciteV function from section 1.2, create a function x=exciteUV(N)
which returns a length N excitation for unvoiced speech (generate a Normal(0,1) sequence).
Then for each encoded frame do the following:

http://www.ece.purdue.edu/VISE/ee438L/lab9/data/phrase.zip
http://www.ece.purdue.edu/VISE/ee438L/lab9/data/phrase.zip
http://engineering.purdue.edu/VISE/ee438L/lab9/pdf/lab9a.pdf

Purdue University: ECE438 - Digital Signal Processing with Applications 8

1. Check if current frame is voiced or unvoiced.

2. Generate the frame of speech by using the appropriate excitation into the filter specified
by the LPC coefficients (you did this in section 1.2). For voiced speech, use a pitch
period of 7.5 ms. Make sure your synthesized segment is the same length as the original
frame.

3. Scale the amplitude of the segment so that the synthesized segment has the same
energy as the original.

4. Append the frame to the end of the output vector.

Listen to the original and synthesized phrase. Can you recognize the synthesized version
as coming from the same speaker? What are some possible ways to improve the quality of
the synthesized speech? Subplot the two speech signals in the same figure.

INLAB REPORT:
Hand in the following:

e Your analysis and synthesis code.
e The compression ratio.
e Plots of the original and synthesized words.

e Comment on the quality of your synthesized signal. How might the quality be im-
proved?

References

[1] J.R. Deller, Jr., J. G. Proakis, J. H. Hansen, Discrete-Time Processing of Speech Signals,
Macmillan, New York, 1993.

[2] J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 3rd edition, Prentice-Hall,
Englewood Cliffs, New Jersey, 1996.

