Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 8:

Number Representation and Waveform Quantization
October 6, 2010

1 Introduction

This lab presents two important concepts for working with digital signals. The first section
discusses how numbers are stored in memory. Numbers may be either in fixed point or
floating point format. Integers are often represented with fixed point format. Decimals,
and numbers that may take on a very large range of values would use floating point. The
second issue of numeric storage is quantization. All analog signals that are processed on the
computer must first be quantized. We will examine the errors that arise from this operation,
and determine how different levels of quantization affect a signal’s quality. We will also
look at two types of quantizers. The uniform quantizer is the simpler of the two. The Max
quantizer is optimal, in that it minimizes the mean square error between the original and
quantized signals.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

Purdue University: ECE438 - Digital Signal Processing with Applications 2

2 Review of number representations

There are two types of numbers that a computer can represent: integers and decimals. These
two numbers are stored quite differently in memory. Integers (e.g. 27, 0, -986) are usually
stored in fixed point format, while decimals (e.g. 12.34, -0.98) most often use floating point
format. Most integer representations use four bytes of memory; floating point values usually
require eight.

There are different conventions for encoding fixed point binary numbers because of the
different ways of representing negative numbers. Three types of fixed point formats that ac-
commodate negative integers are sign-magnitude, one’s-complement, and two’s-complement.
In all three of these “signed” formats, the first bit denotes the sign of the number: 0 for
positive, and 1 for negative. For positive numbers, the magnitude simply follows the first
bit. Negative numbers are handled differently for each format.

Of course, there is also an unsigned data type which can be used when the numbers are
known to be non-negative. This allows a greater range of possible numbers since a bit isn’t
wasted on the negative sign.

2.1 Sign-magnitude representation

Sign-magnitude notation is the simplest way to represent negative numbers. The magnitude
of the negative number follows the first bit. If an integer was stored as one byte, the range
of possible numbers would be -127 to 127.

The value +27 would be represented as
0O 0011011

The number -27 would represented as
1 0011011

2.2 One’s-complement

To represent a negative number, the complement of the bits for the positive number with the
same magnitude are computed. The positive number 27 in one’s-complement form would be
written as

00011011,
but the value -27 would be represented as

11100100.

2.3 Two’s-complement

The problem with each of the above notations is that two different values represent zero.
Two’s-complement notation is a revision to one’s-complement that solves this problem. To
form negative numbers, the positive number is subtracted from a certain binary number.
This number has a one in the most significant bit (MSB), followed by as many zeros as there

Purdue University: ECE438 - Digital Signal Processing with Applications 3
are bits in the representation. If 27 was represented by an eight-bit integer, -27 would be
represented as:

1

= O O
= O O

0
0
1

O~ O
O = O
= O O
O~ O

0
1
1

Notice that this result is one plus the one’s-complement representation for -27 (modulo-2
addition). What about the second value of 07 That representation is

1 0000000

This value equals -128 in two’s-complement notation!

1

)
oS O O
o O O
o O O
o O O
S O O
o O O
o O O

The value represented here is -128; we know it is negative, because the result has a 1 in the
MSB. Two’s-complement is used because it can represent one extra negative value. More
importantly, if the sum of a series of two’s-complement numbers is within the range, overflows
that occur during the summation will not affect the final answer! The range of an 8-bit two’s
complement integer is [-128,127].

2.4 Floating Point

Floating point notation is used to represent a much wider range of numbers. The tradeoff is
that the resolution is variable: it decreases as the magnitude of the number increases. In the
fixed point examples above, the resolution was fixed at 1. It is possible to represent decimals
with fixed point notation, but for a fixed word length any increase in resolution is matched
by a decrease in the range of possible values.

A floating point number, F, has two parts: a mantissa, M, and an exponent, E.

F = M=x2F

The mantissa is a signed fraction, which has a power of two in the denominator. The
exponent is a signed integer, which represents the power of two that the mantissa must be
multiplied by. These signed numbers may be represented with any of the three fixed-point
number formats. The IEEE has a standard for floating point numbers (IEEE 754). For a
32-bit number, the first bit is the mantissa’s sign. The exponent takes up the next 8 bits
(1 for the sign, 7 for the quantity), and the mantissa is contained in the remaining 23 bits.
The range of values for this number is (—1.18 * 10738, 3.40 * 10%%).

To add two floating point numbers, the exponents must be the same. If the exponents
are different, the mantissa is adjusted until the exponents match. If a very small number
is added to a large one, the result may be the same as the large number! For instance, if
0.15600 - - - 0 % 23V is added to 0.62500---0 * 273, the second number would be converted to

Purdue University: ECE438 - Digital Signal Processing with Applications 4

0.0000 - - - 0 % 239 before addition. Since the mantissa only holds 23 binary digits, the decimal
digits 625 would be lost in the conversion. In short, the second number is rounded down to
zero. For multiplication, the two exponents are added and the mantissas multiplied.

3 Quantization

3.1 Introduction

Quantization is the act of rounding off the value of a signal or quantity to certain discrete
levels. For example, digital scales may round off weight to the nearest gram. Analog voltage
signals in a control system may be rounded off to the nearest volt before they enter a digital
controller. Generally, all numbers need to be quantized before they can be represented in a
computer.

Digital images are also quantized. The gray levels in a black and white photograph must
be quantized in order to store an image in a computer. The “brightness” of the photo at
each pixel is assigned an integer value between 0 and 255 (typically), where 0 corresponds
to black, and 255 to white. Since an 8-bit number can represent 256 different values, such
an image is called an “8-bit grayscale” image. An image which is quantized to just 1 bit
per pixel (in other words only black and white pixels) is called a halftone image. Many
printers work by placing, or not placing, a spot of colorant on the paper at each point. To
accommodate this, an image must be halftoned before it is printed.

Quantization can be thought of as a functional mapping y = f(x) of a real-valued input
to a discrete-valued output. An example of a quantization function is shown in Figure 1,
where the x-axis is the input value, and the y-axis is the quantized output value.

3.2 Quantization and Compression

Quantization is sometimes used for compression. As an example, suppose we have a digital
image which is represented by 8 different gray levels: [0 31 63 95 159 191 223 255]. To
directly store each of the image values, we need at least 8-bits for each pixel since the values
range from 0 to 255. However, since the image only takes on 8 different values, we can assign
a different 3-bit integer (a code) to represent each pixel: [000 001 ... 111]. Then, instead of
storing the actual gray levels, we can store the 3-bit code for each pixel. A look-up table,
possibly stored at the beginning of the file, would be used to decode the image. This lowers
the cost of an image considerably: less hard drive space is needed, and less bandwidth is
required to transmit the image (i.e. it downloads quicker). In practice, there are much more
sophisticated methods of compressing images which rely on quantization.

Purdue University: ECE438 - Digital Signal Processing with Applications)

Figure 1: Input-output relation for a 7-level uniform quantizer.

3.3 Image Quantization

Down load [fountainbw.tif]

Download the file [fountainbw.tif]. The image in fountainbw.tif is an 8-bit grayscale
image. We will investigate what happens when we quantize it to fewer bits per pixel (b/pel).
Load it into Matlab and display it using the following sequence of commands:

y = imread(’fountainbw.tif’);

image(y);

colormap(gray(256));

axis(’image’);
The image array will initially be of type uint8, so you will need to convert the image matrix
to type double before performing any computation. Use the command z=double(y) for this.

There is an easy way to uniformly quantize a signal. Let

~ Max(X) — Min(X)
B N -1

A

where X is the signal to be quantized, and N is the number of quantization levels. To force
the data to have a uniform quantization step of A,

e Subtract Min(X) from the data and divide the result by A.

http://engineering.purdue.edu/VISE/ee438L/lab8/data/fountainbw.zip
http://engineering.purdue.edu/VISE/ee438L/lab8/data/fountainbw.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 6

e Round the data to the nearest integer.

e Multiply the rounded data by A and add Min(X) to convert the data back to its
original scale.

Write a Matlab function Y = Uquant (X,N) which will uniformly quantize an input array
X (either a vector or a matrix) to N discrete levels. Use this function to quantize the fountain
image to 7 b/pel, 6, 5, 4, 3, 2, 1 b/pel, and observe the output images !. Print hard copies
of only the 7, 4, 2, and 1 b/pel images, as well as the original.

INLAB REPORT:
1. Describe the artifacts (errors) that appear in the image as the number of bits is lowered?
2. Note the number of b/pel at which the image quality noticeably deteriorates.
3. Hand in the printouts of the above four quantized images and the original.

4. Compare each of these four quantized images to the original.

3.4 Audio Quantization

Down load [speech.au
Down load | music.au

If an audio signal is to be coded, either for compression or for digital transmission, it
must undergo some form of quantization. Most often, a general technique known as vector
quantization is employed for this task, but this technique must be tailored to the specific
application so it will not be addressed here. In this exercise, we will observe the effect of
uniformly quantizing the samples of two audio signals.

Down load the audio files [speech.au | and [music.au| Use your Uquant function
to quantize each of these signals to 7, 4, 2 and 1 bits/sample. Listen to the original and
quantized signals and answer the following questions:

e For each signal, describe the change in quality as the number of b/sample is reduced?

e For each signal, is there a point at which the signal quality deteriorates drastically?
At what point (if any) does it become incomprehensible?

e Which signal’s quality deteriorates faster as the number of levels decreases?

'Remember that with b bits, we can represent N = 2° gray levels.

http://engineering.purdue.edu/VISE/ee438L/lab8/data/speech.zip
http://engineering.purdue.edu/VISE/ee438L/lab8/data/music.zip
http://engineering.purdue.edu/VISE/ee438L/lab8/data/speech.zip
http://engineering.purdue.edu/VISE/ee438L/lab8/data/music.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 7

e Do you think 4 b/sample is acceptable for telephone systems? ... 2 b/sample?

Use subplot to plot in the same figure, the four quantized speech signals over the index
range 7201:7400. Generate a similar figure for the music signal, using the same indices. Make
sure to use orient tall before printing these out.

INLAB REPORT:
Hand in answers to the above questions, and the two Matlab figures.

3.4.1 Error Analysis

As we have clearly observed, quantization produces errors in a signal. The most effective
methods for analysis of the error turn out to be probabilistic. In order to apply these
methods, however, one needs to have a clear understanding of the error signal’s statistical
properties. For example, can we assume that the error signal is white noise? Can we assume
that it is uncorrelated with the quantized signal? As you will see in this exercise, both of
these are good assumptions if the quantization intervals are small compared with sample-to-
sample variations in the signal.

If the original signal is X, and the quantized signal is Y, the error signal is defined by
the following;:
E=Y-X

Compute the error signal for the quantized speech for 7, 4, 2 and 1 b/sample.

When the spacing, A, between quantization levels is sufficiently small, a common sta-
tistical model for the error is a uniform distribution from % to %. Use the command

hist(E,20) to generate 20-bin histograms for each of the four error signals. Use subplot to
place the four histograms in the same figure.

INLAB REPORT:
1. Hand in the histogram figure.
2. How does the number of quantization levels seem to affect the shape of the distribution?

3. Explain why the error histograms you obtain might not be uniform?

Next we will examine correlation properties of the error signal. First compute and plot an
estimate of the autocorrelation function for each of the four error signals using the following
commands:

[r,lags] = xcorr(E,200, ’unbiased’);
plot(lags,r)

Now compute and plot an estimate of the cross-correlation function between the quantized
speech Y and each error signal E using

Purdue University: ECE438 - Digital Signal Processing with Applications 8

[c,lags] = xcorr(E,Y,200, ’unbiased’);
plot(lags,c)

INLAB REPORT:
1. Hand in the autocorrelation and cross-correlation estimates.

2. Is the autocorrelation influenced by the number of quantization levels? Do samples in
the error signal appear to be correlated with each other?

3. Does the number of quantization levels influence the cross-correlation?

3.4.2 Signal to Noise Ratio

One way to measure the quality of a quantized signal is by the Power Signal-to-Noise Ratio
(PSNR). This is defined by the ratio of the power in the quantized speech to power in the
noise.

In this expression, the noise is the error signal E. Generally, this means that a higher PSNR
implies a less noisy signal.

From previous labs we know the power of a sampled signal, z(n), is defined by
1 L
P,=—3 2*(n)
L n=1

where L is the length of z(n). Compute the PSNR for the four quantized speech signals
from the previous section.

In evaluating quantization (or compression) algorithms, a graph called a “rate-distortion
curve” is often used. This curve plots signal distortion vs. bit rate. Here, we can measure
the distortion by ﬁ, and determine the bit rate from the number of quantization levels
and sampling rate. For example, if the sampling rate is 8000 samples/sec, and we are using
7 bits/sample, the bit rate is 56 kilobits/sec (kbps).

Assuming that the speech is sampled at 8kHz, plot the rate distortion curve using ﬁ
as the measure of distortion. Generate this curve by computing the PSNR for 7, 6, 5,..., 1
bits/sample. Make sure the axes of the graph are in terms of distortion and bit rate.

INLAB REPORT:
Hand in a list of the 4 PSNR values, and the rate-distortion curve.

Purdue University: ECE438 - Digital Signal Processing with Applications 9

3.5 Max Quantizer

In this section, we will investigate a different type of quantizer which produces less noise
for a fixed number of quantization levels. As an example, let’s assume the input range for
our signal is [-1,1], but most of the input signal takes on values between [-0.2, 0.2]. If we
place more of the quantization levels closer to zero, we can lower the average error due to
quantization.

A common measure of quantization error is mean squared error (noise power). The Mazx
quantizer is designed to minimize the mean squared error for a given set of training data.
We will study how the Max quantizer works, and compare its performance to that of the
uniform quantizer which was used in the previous sections.

3.5.1 Derivation

The Max quantizer determines quantization levels based on a data set’s probability density
function, f(z), and the number of desired levels, N. It minimizes the mean squared error
between the original and quantized signals:

N

=Y [(g -) @)

k=1"%k

where g is the k' quantization level, and z;, is the lower boundary for ;. The error e
depends on both ¢, and x;. (Note that for the Gaussian distribution, z; = —oo, and
xn41 = 00.) To minimize ¢ with respect to g, we must take a% = 0 and solve for q:

B ffk’““ xf(z)dx
qr = W (1)

We still need the quantization boundaries, x;. Solving 88—; = 0 yields:

k-1 T Gk
T
This means that each non-infinite boundary is exactly halfway in between the two adjacent
quantization levels, and that each quantization level is at the centroid of its region. Figure 2
shows a five-level quantizer for a Gaussian distributed signal. Note that the levels are closer
together in areas of higher probability.

3.5.2 Implementation, Error Analysis and Comparison

Down load | speech.au

In this section we will use Matlab to compute an optimal quantizer, and compare its
performance to the uniform quantizer. Since we almost never know the actual probability

http://engineering.purdue.edu/VISE/ee438L/lab8/data/speech.zip

Figure 2: Five level Max quantizer for Gaussian-distributed signal.

density function of the data that the quantizer will be applied to, we cannot use equation (1)
to compute the optimal quantization levels. Therefore, a numerical optimization procedure
is used on a training set of data to compute the quantization levels and boundaries which
yield the smallest possible error for that set.

Matlab has a built-in function called 1loyds which performs this optimization. It’s
syntax is...
[partition, codebook] = lloyds(training_set, initial_codebook);

This function requires two inputs. The first is the training data set, from which it will es-
timate the probability density function. The second is a vector containing an initial guess
of the optimal quantization levels. It returns the computed optimal boundaries (the “parti-
tion”) and quantization levels (the “codebook”).

Since this algorithm minimizes the error with respect to the quantization levels, it is
necessary to provice a decent initial guess of the codebook is necessary to help ensure a
valid result. If the initial codebook is significantly “far” away from the optimal solution,
it’s possible that the optimization will get trapped in a local minimum, and the resultant
codebook may perform quite poorly. In order to make a good guess, we may first estimate
the shape of the probability density function of the training set using a histogram. The idea
is to divide the histogram into equal “areas” and choose quantization levels as the centers
of each of these segments.

First plot a 40-bin histogram of this speech signal using hist (speech,40), and make an
initial guess of the four optimal quantization levels. Print out the histogram. Then use the
lloyds function to compute an optimal 4-level codebook using as the training
set.

Once the optimal codebook is obtained, use the codebook and partition vectors to quantize
the speech signal. This may be done with a for loop and if statements. Then compute the
error signal and PSNR. On the histogram plot, mark where the optimal quantization levels
fall along the x-axis.

http://engineering.purdue.edu/VISE/ee438L/lab8/data/speech.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 11

INLAB REPORT:
1. Turn in the histogram plot with the codebook superimposed.
2. Compare the PSNR and sound quality of the uniform- and Max-quantized signals.

3. If the speech signal was uniformly distributed, would the two quantizers be the same?
Explain your answer.

