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ECE438 - Laboratory 7:
Discrete-Time Random Processes (Week 1)

October 6, 2010

1 Introduction

Many of the phenomena that occur in nature have uncertainty and are best characterized
statistically as random processes. For example, the thermal noise in electronic circuits,
radar detection, and games of chance are best modeled and analyzed in terms of statistical
averages.

This lab will cover some basic methods of analyzing random processes. Section 2 reviews
some basic definitions and terminology associated with random variables, observations, and
estimation. Section 3 investigates a common estimate of the cumulative distribution function.
Section 4 discusses the problem of transforming a random variable so that it has a given
distribution, and lastly, Section 5 illustrates how the histogram may be used to estimate the
probability density function.

Note that this lab assumes an introductory background in probability theory. Some
review is provided, but it is unfeasible to develop the theory in detail. A secondary reference
such as [1] is strongly encouraged.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu
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2 Random Variables

The following section contains an abbreviated review of some of the basic definitions associ-
ated with random variables. Then we will discuss the concept of an observation of a random
event, and introduce the notion of an estimator.

2.1 Basic Definitions

A random variable is a function that maps a set of possible outcomes of a random experiment
into a set of real numbers. The probability of an event can then be interpreted as the
probability that the random variable will take on a value in a corresponding subset of the
real line. This allows a fully numerical approach to modeling probabilistic behavior.

A very important function used to characterize a random variable is the cumulative
distribution function (CDF), defined as

FX(x) = P (X ≤ x) x ∈ (−∞,∞) . (1)

Here, X is the random variable, and FX(x) is the probability that X will take on a value in
the interval (−∞, x]. It is important to realize that x is simply a dummy variable for the
function FX(x), and is therefore not random at all.

The derivative of the cumulative distribution function, if it exists, is known as the prob-
ability density function, denoted as fX(x). By the fundamental theorem of calculus, the
probability density has the following property:

∫

t1

t0

fX(x)dx = FX(t1) − FX(t0) (2)

= P (t0 < X ≤ t1) .

Since the probability that X lies in the interval (−∞,∞) equals one, the entire area under
the density function must also equal one.

Expectations are fundamental quantities associated with random variables. The expected
value of some function of X, call it g(X), is defined by the following.

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx (for X continuous)

E[g(X)] =
∞
∑

x=−∞

g(x)P (X = x) (for X discrete)

Note that expected value of g(X) is a deterministic number. Note also that due to the
properties of integration, expectation is a linear operator.

The two most common expectations are the mean µX and variance σ2

X
, defined by

µX = E[X] =
∫ ∞

−∞
xfX(x)dx (3)

σ2

X
= E[(X − µX)2] =

∫ ∞

−∞
(x − µX)2fX(x)dx . (4)
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A very important type of random variable is the Gaussian or normal random variable.
A Gaussian random variable has a density function of the following form:

fX(x) =
1√

2πσX

exp

(

− 1

2σ2

X

(x − µX)2

)

. (5)

Note that a Gaussian random variable is completely characterized by its mean and variance.
This is not necessarily the case for other types of distributions. Sometimes, the notation
X ∼ N(µ, σ2) is used to identify X as being Gaussian with mean µ and variance σ2.

2.2 Samples of a Random Variable

Suppose some random experiment may be characterized by a random variable X whose
distribution is unknown. For example, suppose we are measuring a deterministic quantity v,
but our measurement is subject to a random measurement error ε. We can then characterize
the observed value, X, as a random variable, X = v + ε.

If the distribution of X does not change over time, we may gain further insight into X
by making several independent observations {X1, X2, . . . , XN}. These observations Xi, also
known as samples, will be independent random variables and have the same distribution
FX(x). In this situation, the Xi’s are referred to as i.i.d., for independent and identically
distributed. We also sometimes refer to {X1, X2, . . . , XN} collectively as a sample, or obser-
vation, of size N.

Suppose we want to use our observation {X1, X2, . . . , XN} to estimate the mean and
variance of X. Two estimators which should already be familiar to you are the sample mean
and sample variance defined by

µ̂X =
1

N

N
∑

i=1

Xi (6)

σ̂2

X
=

1

N − 1

N
∑

i=1

(Xi − µ̂X)2 . (7)

It is important to realize that these sample estimates are functions of random variables, and
are therefore themselves random variables. Therefore we can also talk about the statistical
properties of the estimators. For example, we can compute the mean and variance of the
sample mean µ̂X .

E [µ̂X ] = E

[

1

N

N
∑

i=1

Xi

]

=
1

N

N
∑

i=1

E [Xi] = µX (8)

V ar [µ̂X ] = V ar

[

1

N

N
∑

i=1

Xi

]

=
1

N2
V ar

[

N
∑

i=1

Xi

]

=
1

N2

N
∑

i=1

V ar [Xi] =
σ2

X

N
(9)

In both (8) and (9) we have used the i.i.d. assumption. We can also show that E[σ̂2

X
] = σ2

X
.
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An estimate â for some parameter a which has the property E[â] = a is said to be an
unbiased estimate. An estimator such that V ar[â] → 0 as N → ∞ is said to be consistent.
These two properties are highly desirable because they imply that if a large number of
samples are used the estimate will be close to the true parameter.

Suppose X is a Gaussian random variable with mean 0 and variance 1. Use the Matlab
function random or randn to generate 1000 samples of X, denoted as X1, X2, . . . , X1000. See
the online help for the random function. Plot them using the Matlab function plot. We
will assume our generated samples are i.i.d.

Write Matlab functions to compute the sample mean and sample variance of equations
(6) and (7) without using the predefined mean and var functions. Use these functions to
compute the sample mean and sample variance of the samples you just generated.

INLAB REPORT:

1. Submit the plot of samples of X.

2. Submit the sample mean and the sample variance that you calculated. Why are they
not equal to the true mean and true variance?

2.3 Linear Transformation of a Random Variable

A linear transformation of a random variable X has the following form

Y = aX + b (10)

where a and b are real numbers, and a 6= 0. A very important property of linear transforma-
tions is that they are distribution-preserving, meaning that Y will be random variable with
a distribution of the same form as X. For example, in (10), if X is Gaussian then Y will
also be Gaussian, but not necessarily with the same mean and variance.

Using the linearity property of expectation, find the mean µY and variance σ2

Y
of Y in

terms of a, b, µX , and σ2

X
. Show your derivation in detail.

Hint: First find the mean, then substitute the result when finding the variance.

Consider a linear transformation of a Gaussian random variable X with mean 0 and
variance 1. Calculate the constants a and b which make the mean and the variance of Y 3
and 9, respectively. Using equation (5), find the probability density function for Y .

Generate 1000 samples of X, and then calculate 1000 samples of Y by applying the
linear transformation in equation (10), using the a and b that you just determined. Plot
the resulting samples of Y , and use your functions to calculate the sample mean and sample
variance of the samples of Y .

http://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/random.pdf
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INLAB REPORT:

1. Submit your derivation of the mean and variance of Y .

2. Submit the transformation you used, and the probability density function for Y .

3. Submit the plot of samples of Y and the Matlab code used to generate Y . Include the
calculated sample mean and sample variance for Y .

3 Estimating the Cumulative Distribution Function

Suppose we want to model some phenomenon as a random variable X with distribution
FX(x). How can we assess whether or not this is an accurate model? One method would
be to make many observations and estimate the distribution function based on the observed
values. If the distribution estimate is “close” to our proposed model FX(x), we have evidence
that our model is a good characterization of the phenomenon. This section will introduce a
common estimate of the cumulative distribution function.

Given a set of i.i.d. random variables {X1, X2, ..., XN} with CDF FX(x), the empirical
cumulative distribution function F̂X(x) is defined as the following.

F̂X(x) =
1

N

N
∑

i=1

I{Xi≤x} (11)

I{Xi≤x} =
{

1, if Xi ≤ x
0, otherwise

(12)

In words, F̂X(x) is the fraction of the Xi’s which are less than or equal to x.

To get insight into the estimate F̂X(x), let’s compute its mean and variance. To do so,
it is easiest to first define Nx as the number of Xi’s which are less than or equal to x.

Nx =
N
∑

i=1

I{Xi≤x} = NF̂X(x) (13)

Notice that P (Xi ≤ x) = FX(x), so

P (I{Xi≤x} = 1) = FX(x)

P (I{Xi≤x} = 0) = 1 − FX(x)

Now we can compute the mean of F̂X(x) as follows,

E
[

F̂X(x)
]

=
1

N
E[Nx]

=
1

N

N
∑

i=1

E
[

I{Xi≤x}

]
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=
1

N
NE

[

I{Xi≤x}

]

= 0 · P
(

I{Xi≤x} = 0
)

+ 1 · P
(

I{Xi≤x} = 1
)

= FX(x) .

This shows that F̂X(x) is an unbiased estimate of FX(x). By a similar approach, we can
show that

V ar
[

F̂X(x)
]

=
1

N
FX(x)(1 − FX(x)) .

Therefore the empirical CDF F̂X(x) is both an unbiased and consistent estimate of the true
CDF.

3.1 Exercise

Write a function F=empcdf(X,t) to compute the empirical CDF F̂X(t) from the sample
vector X at the points specified in the vector t. (Hint: The expression sum(X<=s) will
return the number of elements in the vector X which are less than or equal to s.)

To test your function, generate a sample of Uniform[0,1] random variables using the
function X = rand(1, N). Plot two CDF estimates: one using a sample size N = 20, and
one using N = 200. Plot these functions in the range t=[-1:0.001:2], and on each plot
superimpose the true distribution for a Uniform[0,1] random variable.

INLAB REPORT:
Hand in your empcdf function and the two plots.

4 Generating Samples from a Given Distribution

It is oftentimes necessary to generate samples from a particular distribution. For example,
we might want to run simulations to test how an algorithm performs on noisy inputs. In this
section we will address the problem of generating random numbers from a given distribution
FX(x).

Suppose we have a continuous random variable X with distribution FX(x), and we form
the new random variable Y = FX(X). In other words Y is a function of X, and the particular
function is the CDF of the random variable X.

X −→ FX(·) −→ Y (14)

How is Y distributed? First notice that FX(·) is a probability, so that Y can only take
values in the interval [0, 1].

P (Y ≤ y) =
{

0, for y < 0
1, for y > 1

(15)
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Since FX(x) is a monotonically increasing function of x, the event {Y ≤ y} is equivalent to
{X ≤ x} if we define y = FX(x). This implies that for 0 ≤ y ≤ 1,

FY (y) = P (Y ≤ y)

= P (FX(X) ≤ FX(x))

= P (X ≤ x) (monotonicity)

= FX(x)

= y .

Therefore Y is uniformly distributed on the interval [0,1].

Conversely, if FX(·) is a one-to-one function, we may use the inverse transformation
F−1

X
(U) to transform a Uniform[0,1] random variable U to a random variable with distribu-

tion FX(·).
U −→ F−1

X
(·) −→ X (16)

Note that combining these results allows us to transform any continuous random variable
X ∼ FX(x) to any other continuous random variable Z ∼ FZ(z), provided that FZ(·) is a
one-to-one function.

X −→ FX(·) U−→ F−1

Z
(·) −→ Z (17)

4.1 Exercise

Your task is to use i.i.d. Uniform[0,1] random variables to generate a set of i.i.d. exponentially
distributed random variables with CDF

FX(x) = (1 − e−3x)u(x) . (18)

Derive the required transformation.

Generate the Uniform[0,1] random variables using the function rand(1, N). Use your
empcdf function to plot two CDF estimates for the exponentially distributed random vari-
ables: one using a sample size N = 20, and one using N = 200. Plot these functions in the
range x=[-1:0.001:2], and on each plot superimpose the true exponential distribution of
equation (18).

INLAB REPORT:

• Hand in the derivation of the required transformation, and your Matlab code.

• Hand in the two plots.
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5 Estimating the Probability Density Function

The statistical properties of a random variable are completely described by its probability
density function (assuming it exists, of course). Therefore, it is oftentimes useful to estimate
the PDF, given an observation of a random variable. For example, similar to the empirical
CDF, probability density estimates may be used to test a proposed model. They may also be
used in non-parametric classification problems, where we need to classify data as belonging
to a particular group but without any knowledge of the true underlying class distributions.

Notice that we cannot form a density estimate by simply differentiating the empirical
CDF, since this function contains discontinuities at the sample locations Xi. Rather, we
need to estimate the probability that a random variable will fall within a particular interval
of the real axis. In this section, we will describe a common method known as the histogram.

5.1 The Histogram

Our goal is to estimate an arbitrary probability density function, fX(x), within a finite region
of the x-axis. We will do this by partitioning the region into L equally spaced subintervals,
or “bins”, and forming an approximation for fX(x) within each bin. Let our region of
support start at the value x0, and end at xL. Our L subintervals of this region will be
[x0, x1], (x1, x2], ..., (xL−1, xL]. To simplify our notation we will define bin(k) to represent
the interval (xk−1, xk], k = 1, 2, . . . , L, and define the quantity ∆ to be the length of each
subinterval.

bin(k) = (xk−1, xk] k = 1, 2, . . . , L

∆ =
xL − x0

L

We will also define f̃(k) to be the probability that X falls into bin(k).

f̃(k) = P (X ∈ bin(k))

=
∫

xk

xk−1

fX(x)dx (19)

≈ fX(x)∆ for x ∈ bin(k) (20)

The approximation in (20) only holds for an appropriately small bin width ∆.

Next we introduce the concept of a histogram of a collection of i.i.d. random variables
{X1, X2, . . . , XN}. Let us start by defining a function that will indicate whether or not the
random variable Xn falls within bin(k).

In(k) =
{

1, if Xn ∈ bin(k)
0, if Xn /∈ bin(k)

(21)

The histogram of Xn at bin(k), denoted as H(k), is simply the number of random variables
that fall within bin(k). This can be written as

H(k) =
N
∑

n=1

In(k) . (22)
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We can show that the normalized histogram, H(k)/N , is an unbiased estimate of the
probability of X falling in bin(k). Let us compute the expected value of the normalized
histogram.

E

[

H(k)

N

]

=
1

N

N
∑

n=1

E[In(k)]

=
1

N

N
∑

n=1

{1 · P (Xn ∈ bin(k)) + 0 · P (Xn /∈ bin(k))}

= f̃(k)

The last equality results from the definition of f̃(k), and from the assumption that the Xn’s
have the same distribution. A similar argument may be used to show that the variance of
H(k) is given by

V ar

[

H(k)

N

]

=
1

N
f̃(k)(1 − f̃(k)) .

Therefore, as N grows large, the bin probabilities f̃(k) can be approximated by the normal-
ized histogram H(k)/N .

f̃(k) ≈ H(k)

N
(23)

Using (20), we may then approximate the density function fX(x) within bin(k) by

fX(x) ≈ H(k)

N∆
for x ∈ bin(k) . (24)

Notice this estimate is a staircase function of x which is constant over each interval bin(k).
It can also easily be verified that this density estimate integrates to 1.

5.2 Exercise

Let U be a uniformly distributed random variable on the interval [0, 1] with the following
cumulative probability distribution, FU(u):

FU(u) =







0, if u < 0
u, if 0 ≤ u ≤ 1
1, if u > 1

We can calculate the cumulative probability distribution for the new random variable X = U
1

3 .

FX(x) = P (X ≤ x)

= P (U
1

3 ≤ x)

= P (U ≤ x3)

= FU(u)|
u=x3

=







0, if x < 0
x3, if 0 ≤ x ≤ 1
1, if x > 1
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Plot FX(x) for x ∈ [0, 1]. Also, analytically calculate the probability density fX(x), and plot
it for x ∈ [0, 1].

Using L = 20, x0 = 0 and xL = 1, use Matlab to compute f̃(k), the probability of X
falling into bin(k). (Hint: Use the fact that f̃(k) = FX(xk) − FX(xk−1).) Plot f̃(k) for
k = 1, . . . , L using the stem function.

INLAB REPORT:

1. Submit your plots of FX(x), fX(x) and f̃(k). Use stem to plot f̃(k), and put all three
plots on a single figure using subplot.

2. Show (mathematically) how fX(x) and f̃(k) are related.

Generate 1000 samples of a random variable U that is uniformly distributed between 0
and 1 (using the rand command). Then form the random vector X by computing X = U

1

3 .

Use the Matlab function hist to plot a normalized histogram for your samples of X,
using 20 bins uniformly spaced on the interval [0, 1]. (Hint: Use the Matlab command
H=hist(X,(0.5:19.5)/20) to obtain the histogram, and then normalize H.) Use the stem
command to plot the normalized histogram H(k)/N and f̃(k) together on the same figure
using subplot.

INLAB REPORT:

1. Submit your two stem plots of H(k)/N and f̃(k). How do these plots compare?

2. Discuss the tradeoffs (advantages and the disadvantages) between selecting a very large
or very small bin-width.
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