
Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 10:
Image Processing (Week 2)

October 6, 2010

1 Introduction

This is the second part of a two week experiment in image processing. In the first
week , we covered the fundamentals of digital monochrome images, intensity histograms,
pointwise transformations, gamma correction, and image enhancement based on filtering.

During this week, we will cover some fundamental concepts of color images. This will
include a brief description on how humans perceive color, followed by descriptions of two
standard color spaces. We will also discuss an application known as halftoning, which is the
process of converting a gray scale image into a binary image.

2 Color Images

2.1 Background on Color

Color is a perceptual phenomenon related to the human response to different wavelengths
of light, mainly in the region of 400 to 700 nanometers (nm). The perception of color arises
from the sensitivities of three types of neurochemical sensors in the retina, known as the long

(L), medium (M), and short (S) cones. The response of these sensors to photons is shown in
Figure 1. Note that each sensor responds to a range of wavelengths.

Due to this property of the human visual system, all colors can be modeled as combi-
nations of the three primary color components: red (R), green (G), and blue (B). For the
purpose of standardization, the CIE (Commission International de l’Eclairage — the Inter-
national Commission on Illumination) designated the following wavelength values for the
three primary colors: blue = 435.8nm, green = 546.1nm, and red = 700nm.

The relative amounts of the three primary colors of light required to produce a color of a
given wavelength are called tristimulus values. Figure 2 shows the plot of tristimulus values
using the CIE primary colors. Notice that some of the tristimulus values are negative, which
indicates that colors at those wavelengths cannot be reproduced by the CIE primary colors.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

http://engineering.purdue.edu/VISE/ee438L/lab10/pdf/lab10a.pdf
http://engineering.purdue.edu/VISE/ee438L/lab10/pdf/lab10a.pdf


Purdue University: ECE438 - Digital Signal Processing with Applications 2

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

1.2

wavelength (nm)

re
la

tiv
e 

se
ns

iti
vi

ty

LMS

Figure 1: Relative photon sensitivity of long (L), medium (M), and short (S) cones.

400 450 500 550 600 650 700
−1

−0.5

0

0.5

1

1.5

2

2.5

wavelength (nm)

tr
is

tim
ul

us
 v

al
ue

s

r(λ)

g(λ)

b(λ)

Figure 2: Plot of tristimulus values using CIE primary colors.

2.2 Color Spaces

A color space allows us to represent all the colors perceived by human beings. We
previously noted that weighted combinations of stimuli at three wavelengths are sufficient
to describe all the colors we perceive. These wavelengths form a natural basis, or coordinate
system, from which the color measurement process can be described. In this lab, we will
examine two common color spaces: RGB and Y CbCr. For more information, refer to [1].

• RGB space is one of the most popular color spaces, and is based on the tristimulus
theory of human vision, as described above. The RGB space is a hardware-oriented
model, and is thus primarily used in computer monitors and other raster devices. Based
upon this color space, each pixel of a digital color image has three components: red,
green, and blue.

• Y CbCr space is another important color space model. This is a gamma corrected space
defined by the CCIR (International Radio Consultative Committee), and is mainly used
in the digital video paradigm. This space consists of luminance (Y ) and chrominance

(CbCr) components. The importance of the Y CbCr space comes from the fact that the



Purdue University: ECE438 - Digital Signal Processing with Applications 3

human visual system perceives a color stimulus in terms of luminance and chrominance
attributes, rather than in terms of R,G, and B values. The relation between Y CbCr

space and gamma corrected RGB space is given by the following linear transformation.

Y = 0.299R + 0.587G + 0.114B
Cb = 0.564(B − Y ) + 128
Cr = 0.713(R − Y ) + 128

(1)

In Y CbCr, the luminance parameter is related to an overall intensity of the image. The
chrominance components are a measure of the relative intensities of the blue and red com-
ponents. The inverse of the transformation in equation (1) can easily be shown to be the
following.

R = Y + 1.4025(Cr − 128)
G = Y − 0.3443(Cb − 128) − 0.7144 ∗ (Cr − 128)
B = Y + 1.7730(Cb − 128)

(2)

2.3 Color Exercise

Download girl.tif
Download ycbcr.mat

Help on image command

You will be displaying both color and monochrome images in the following exercises.
Matlab’s image command can be used for both image types, but care must be taken for the
command to work properly. Please see the help on the image command for details.

Download the RGB color image file girl.tif , and load it into Matlab using the imread

command. Check the size of the Matlab array for this image by typing whos. Notice that
this is a three dimensional array of type uint8. It contains three gray scale image planes
corresponding to the red, green, and blue components for each pixel. Since each color pixel
is represented by three bytes, this is commonly known as a 24-bit image. Display the color
image using

image(A);

axis(’image’);

where A is the 3-D RGB array.

You can extract each of the color components using the following commands.

RGB = imread(’girl.tif’); % color image is loaded into matrix RGB

http://engineering.purdue.edu/VISE/ee438L/lab10/data/girl.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/ycbcr.zip
http://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/image.pdf
http://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/image.pdf
http://engineering.purdue.edu/VISE/ee438L/lab10/data/girl.zip


Purdue University: ECE438 - Digital Signal Processing with Applications 4

R = RGB(:,:,1); % extract red component from RGB

G = RGB(:,:,2); % extract green component from RGB

B = RGB(:,:,3); % extract blue component from RGB

Use the subplot and image commands to plot the original image, along with each of the
three color components. Note that while the original is a color image, each color component
separately is a monochrome image. Use the syntax subplot(2,2,n), where n = 1, 2, 3, 4, to
place the four images in the same figure. Place a title on each of the images, and print the
figure (use a color printer).

We will now examine the Y CbCr color space representation. Download the file ycbcr.mat
, and load it into Matlab using load ycbcr. This file contains a Matlab array for a color
image in Y CbCr format. The array contains three gray scale image planes that correspond
to the luminance (Y ) and two chrominance (CbCr) components. Use subplot(3,1,n) and
image to display each of the components in the same figure. Place a title on each of the
three monochrome images, and print the figure.

In order to properly display this color image, we need to convert it to RGB format. Write
a Matlab function that will perform the transformation of equation (2). It should accept a
3-D Y CbCr image array as input, and return a 3-D RGB image array.

Now, convert the ycbcr array to an RGB representation and display the color image.
Remember to convert the result to type uint8 before using the image command.

An interesting property of the human visual system, with respect to the Y CbCr color
space, is that we are much more sensitive to distortion in the luminance component than in
the chrominance components. To illustrate this, we will smooth each of these components
with a Gaussian filter and view the results.

You may have noticed when you loaded ycbcr.mat into Matlab that you also loaded a
5 × 5 matrix, h. This is a 5 × 5 Gaussian filter with σ2 = 2.0. (See the first week of the
experiment for more details on this type of filter.) Alter the ycbcr array by filtering only the
luminance component, ycbcr(:,:,1), using the Gaussian filter (use the filter2 function).
Convert the result to RGB, and display it using image. Now alter ycbcr by filtering both
chrominance components, ycbcr(:,:,2) and ycbcr(:,:,3), using the Gaussian filter. Convert
this result to RGB, and display it using image.

Use subplot(3,1,n) to place the original and two filtered versions of the ycbcr image
in the same figure. Place a title on each of the images, and print the figure (in color). Do
you see a significant difference between the filtered versions and the original image? This
is the reason that Y CbCr is often used for digital video. Since we are not very sensitive to
corruption of the chrominance components, we can afford to lose some information in the
encoding process.

http://engineering.purdue.edu/VISE/ee438L/lab10/data/ycbcr.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/ycbcr.zip


Purdue University: ECE438 - Digital Signal Processing with Applications 5

INLAB REPORT:

1. Submit the figure containing the components of girl.tif.

2. Submit the figure containing the components of ycbcr.

3. Submit your code for the transformation from Y CbCr to RGB.

4. Submit the figure containing the original and filtered versions of ycbcr. Comment on
the result of filtering the luminance and chrominance components of this image. Based
on this, what conclusion can you draw about the human visual system?

3 Halftoning

In this section, we will cover a useful image processing technique called halftoning. The
process of halftoning is required in many present day electronic applications such as facsimile
(FAX), electronic scanning/copying, laser printing, and low bandwidth remote sensing.

3.1 Binary Images

As was discussed in the first week of this lab, an 8-bit monochrome image allows 256
distinct gray levels. Such images can be displayed on a computer monitor if the hardware
supports the required number intensity levels. However, some output devices print or display
images with much fewer gray levels. In the extreme case, the gray scale images must be
converted to binary images, where pixels can only be black or white.

(a) (b)

Figure 3: (a) Original gray scale image. (b) Binary image produced by simple fixed thresh-
olding.

The simplest way of converting to a binary image is based on thresholding, i.e. two-level
(one-bit) quantization. Let f(i, j) be a gray scale image, and b(i, j) be the corresponding



Purdue University: ECE438 - Digital Signal Processing with Applications 6

binary image based on thresholding. For a given threshold T , the binary image is computed
as the following:

b(i, j) =

{

255 if f(i, j) > T
0 else

(3)

Figure 3 shows an example of conversion to a binary image via thresholding, using T = 80.

It can be seen in Figure 3 that the binary image is not “shaded” properly–an artifact
known as false contouring. False contouring occurs when quantizing at low bit rates (one
bit in this case) because the quantization error is dependent upon the input signal. If one
reduces this dependence, the visual quality of the binary image is usually enhanced.

One method of reducing the signal dependence of the quantization error is to add uni-
formly distributed white noise to the input image prior to quantization. To each pixel of
the gray scale image f(i, j), a white random number n in the range [−A,A] is added, and
then the resulting image is quantized by a one-bit quantizer, as in equation (3). The result
of this method is illustrated in Figure 4, where the additive noise is uniform over [−40, 40].
Notice that even though the resulting binary image is somewhat noisy, the false contouring
has been significantly reduced.

Figure 4: Random noise binarization.

3.2 Ordered Dithering

Halftone images are binary images that appear to have a gray scale rendition. Although
the random thresholding technique described in Sec. 3.1 can be used to produce a halftone
image, it is not often used in real applications since it yields very noisy results. In this
section, we will describe a better halftoning technique known as ordered dithering.

The human visual system tends to average a region around a pixel instead of treating
each pixel individually, thus it is possible to create the illusion of many gray levels in a binary
image, even though there are actually only two gray levels. With 2 × 2 binary pixel grids,



Purdue University: ECE438 - Digital Signal Processing with Applications 7

we can represent 5 different “effective” intensity levels, as shown in Figure 5. Similarly for
3 × 3 grids, we can represent 10 distinct gray levels. In dithering, we replace blocks of the
original image with these types of binary grid patterns.

0 1 2 3 4

Figure 5: Five different patterns of 2 × 2 binary pixel grids.

Remember from Sec. 3.1 that false contouring artifacts can be reduced if we can reduce
the signal dependence of the quantization error. We showed that adding uniform noise to
the monochrome image can be used to achieve this decorrelation. An alternative method
would be to use a variable threshold value for the quantization process.

Ordered dithering consists of comparing blocks of the original image to a 2-D grid, known
as a dither pattern. Each element of the block is then quantized using the corresponding
value in the dither pattern as a threshold. The values in the dither matrix are fixed, but
are typically different from each other. Because the threshold value varies between adjacent
pixels, some decorrelation from the quantization error is achieved, which has the effect of
reducing false contouring.

The following is an example of a 2 × 2 dither matrix,

T (i, j) = 255 ∗

[

5/8 3/8
1/8 7/8

]

(4)

This is a part of a general class of optimum dither patterns known as Bayer matrices. The
values of the threshold matrix T (i, j) are determined by the order that pixels turn “ON”.
The order can be put in the form of an index matrix. For a Bayer matrix of size 2, the index
matrix I(i, j) is given by

I(i, j) =

[

3 2
1 4

]

(5)

and the relation between T (i, j) and I(i, j) is given by

T (i, j) = 255(I(i, j) − 0.5)/n2 (6)

where n2 is the total number of elements in the matrix.

Figure 6 shows the halftone image produced by Bayer dithering of size 4. It is clear from
the figure that the halftone image provides good detail rendition. However the inherent
square grid patterns are visible in the halftone image.



Purdue University: ECE438 - Digital Signal Processing with Applications 8

Figure 6: The halftone image produced by Bayer dithering of size 4.

3.3 Error Diffusion

Another method for halftoning is random dithering by error diffusion. In this case, the
pixels are quantized in a specific order (raster ordering1 is commonly used), and the residual
quantization error for the current pixel is propagated (diffused) forward to unquantized
pixels. This keeps the overall intensity of the output binary image closer to the input gray
scale intensity.

Q

H

+

+

-

+

•
f(i,j)

e(i,j)

b(i,j)f(i,j)
~

Figure 7: Block diagram of the error diffusion method.

Figure 7 is a block diagram that illustrates the method of error diffusion. The current
input pixel f(i, j) is modified by means of past quantization errors to give a modified input
f̃(i, j). This pixel is then quantized to a binary value by Q, using some threshold T . The
error e(i, j) is defined as

e(i, j) = f̃(i, j) − b(i, j) (7)

where b(i, j) is the quantized binary image.

1Raster ordering of an image orients the pixels from left to right, and then top to bottom. This is similar
to the order that a CRT scans the electron beam across the screen.



Purdue University: ECE438 - Digital Signal Processing with Applications 9

The error e(i, j) of quantizing the current pixel is is diffused to “future” pixels by means
of a two-dimensional weighting filter h(i, j), known as the diffusion filter. The process
of modifying an input pixel by past errors can be represented by the following recursive
relationship.

f̃(i, j) = f(i, j) +
∑

k,l∈S

h(k, l)e(i − k, j − l) (8)

The most popular error diffusion method, proposed by Floyd and Steinberg, uses the
diffusion filter shown in Figure 8. Since the filter coefficients sum to one, the local average
value of the quantized image is equal to the local average gray scale value. Figure 9 shows the
halftone image produced by Floyd and Steinberg error diffusion. Compared to the ordered
dither halftoning, the error diffusion method can be seen to have better contrast performance.
However, it can be seen in Figure 9 that error diffusion tends to create “streaking” artifacts,
known as worm patterns.

3/16 5/16 1/16

7/16•

Figure 8: The error diffusion filter proposed by Floyd and Steinberg.

Figure 9: A halftone image produced by the Floyd and Steinberg error diffusion method.



Purdue University: ECE438 - Digital Signal Processing with Applications 10

3.4 Halftoning Exercise

Download house.tif

An important preliminary note: If your display software (e.g Matlab) resizes your
image before rendering, a halftoned image will probably not be rendered properly. For
example, a subsampling filter will result in gray pixels in the displayed image! To prevent
this in Matlab, use the truesize command just after the image command. This will assign
one monitor pixel for each image pixel.

We will now implement the halftoning techniques described above. Save the result of
each method in MAT files so that you may later analyze and compare their performance.
Download the image file house.tif and read it into Matlab. Print out a copy of this image.

First try the simple thresholding technique based on equation (3), using T = 108, and
display the result. In Matlab, an easy way to threshold an image X is to use the command
Y = 255*(X>T);. Label the quantized image, and print it out.

Now create an “absolute error” image by subtracting the binary from the original image,
and then taking the absolute value. The degree to which the original image is present in the
error image is a measure of signal dependence of the quantization error. Label and print out
the error image.

Compute the mean square error (MSE), which is defined by

MSE =
1

NM

∑

i,j

{f(i, j) − b(i, j)}2 (9)

where NM is the total number of pixels in each image. Note the MSE on the printout of
the quantized image.

Now try implementing Bayer dithering of size 4. You will first have to compute the dither
pattern. The index matrix for a dither pattern of size 4 is given by

I(i, j) =











12 8 10 6
4 16 2 14
9 5 11 7
1 13 3 15

.











(10)

Based on this index matrix and equation (6), create the corresponding threshold matrix.

For ordered dithering, it is easiest to perform the thresholding of the image all at once.
This can be done by creating a large threshold matrix by repeating the 4× 4 dither pattern.
For example, the command T = [T T; T T]; will increase the dimensions of T by 2. If this
is repeated until T is at least as large as the original image, T can then be trimmed so that is
is the same size as the image. The thresholding can then be performed using the command
Y = 255*(X>T);.

As above, compute an error image and calculate the MSE. Print out the quantized image,
the error image, and note the MSE.

http://engineering.purdue.edu/VISE/ee438L/lab10/data/house.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/house.zip


Purdue University: ECE438 - Digital Signal Processing with Applications 11

Now try halftoning via the error diffusion technique, using a threshold T = 108 and the
diffusion filter in Figure 8. It is most straightforward to implement this by performing the
following steps on each pixel in raster order:

1. Initialize an output image matrix with zeros.

2. Quantize the current pixel using using the threshold T , and place the result in the
output matrix.

3. Compute the quantization error by subtracting the binary pixel from the gray scale
pixel.

4. Add scaled versions of this error to “future” pixels of the original image, as depicted
by the diffusion filter of Figure 8.

5. Move on to the next pixel.

You do not have to quantize the outer border of the image.

As above, compute an error image and calculate the MSE. Print out the quantized image,
the error image, and note the MSE.

The human visual system naturally lowpass filters halftone images. To analyze this
phenomenon, filter each of the halftone images with the Gaussian lowpass filter h that you
loaded in the previous section (from ycbcr.mat), and measure the MSE of the filtered versions.
Make a table that contains the MSE’s for both filtered and nonfiltered halftone images for
each of the three methods. Does lowpass filtering reduce the MSE for each method?

INLAB REPORT:

1. Hand in the original image and the three binary images. Make sure that they are all
labeled, and that the mean square errors are noted on the binary images.

2. Compare the performance of the three methods based on the visual quality of the
halftoned images. Also compare the resultant MSE’s. Is the MSE consistent with the
visual quality?

3. Submit the three error images. Which method appears to be the least signal depen-
dent? Does the signal dependence seem to be correlated with the visual quality?

4. Compare the MSE’s of the filtered versions with the nonfiltered versions for each
method. What is the implication of these observations with respect to how we perceive
halftone images.

References

[1] J.M. Kasson and W. Plouffe, “An analysis of selected computer interchange color
spaces,” ACM Trans. Graphics, vol. 11, no. 4, pp. 373–405, 1992.


