
Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 10:
Image Processing (Week 1)

October 6, 2010

1 Introduction

This is the first part of a two week experiment in image processing. During this week, we
will cover the fundamentals of digital monochrome images, intensity histograms, pointwise
transformations, gamma correction, and image enhancement based on filtering.

In the second week , we will cover some fundamental concepts of color images. This
will include a brief description on how humans perceive color, followed by descriptions of
two standard color spaces. The second week will also discuss an application known as image
halftoning.

2 Introduction to Monochrome Images

An image is the optical representation of objects illuminated by a light source. Since we
want to process images using a computer, we represent them as functions of discrete spatial
variables. For monochrome (black-and-white) images, a scalar function f(i, j) can be used
to represent the light intensity at each spatial coordinate (i, j). Figure 1 illustrates the
convention we will use for spatial coordinates to represent images.

If we assume the coordinates to be a set of positive integers, for example i = 1, . . . ,M
and j = 1, . . . , N , then an image can be conveniently represented by a matrix.

f(i, j) =

f(1, 1) f(1, 2) · · · f(1, N)
f(2, 1) f(2, 2) · · · f(2, N)

...
...

...
f(M, 1) f(M, 2) · · · f(M,N)

(1)

We call this an M × N image, and the elements of the matrix are known as pixels.

The pixels in digital images usually take on integer values in the finite range,

0 ≤ f(i, j) ≤ Lmax (2)

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

http://engineering.purdue.edu/VISE/ee438L/lab10/pdf/lab10b.pdf

Purdue University: ECE438 - Digital Signal Processing with Applications 2

origin

f(i,j)

i

j

•

Figure 1: Spatial coordinates used in digital image representation.

where 0 represents the minimum intensity level (black), and Lmax is the maximum intensity
level (white) that the digital image can take on. The interval [0, Lmax] is known as a gray

scale.

In this lab, we will concentrate on 8-bit images, meaning that each pixel is represented
by a single byte. Since a byte can take on 256 distinct values, Lmax is 255 for an 8-bit image.

2.1 Exercise

Download yacht.tif
Help on image command

In order to process images within Matlab, we need to first understand their numerical
representation. Download the image file yacht.tif . This is an 8-bit monochrome image.
Read it into a matrix using A = imread(’yacht.tif’);.

Type whos to display your variables. Notice under the “Class” column that the A matrix
elements are of type uint8 (unsigned integer, 8 bits). This means that Matlab is using a single
byte to represent each pixel. Matlab cannot perform numerical computation on numbers of
type uint8, so we usually need to convert the matrix to a floating point representation.
Create a double precision representation of the image using B = double(A);. Again, type
whos and notice the difference in the number of bytes between A and B. In future sections,
we will be performing computations on our images, so we need to remember to convert them
to type double before processing them.

Display yacht.tif using the following sequence of commands:

image(B);

colormap(gray(256));

axis(’image’);

The image command works for both type uint8 and double images. The colormap command

http://engineering.purdue.edu/VISE/ee438L/lab10/data/yacht.zip
http://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/image.pdf
http://engineering.purdue.edu/VISE/ee438L/lab10/data/yacht.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 3

specifies the range of displayed gray levels, assigning black to 0 and white to 255. It is
important to note that if any pixel values are outside the range 0 to 255 (after processing),
they will be clipped to 0 or 255 respectively in the displayed image. It is also important to
note that a floating point pixel value will be rounded down (“floored”) to an integer before
it is displayed. Therefore the maximum number of gray levels that will be displayed on the
monitor is 255, even if the image values take on a continuous range.

Now we will practice some simple operations on the yacht.tif image. Make a horizontally
flipped version of the image by reversing the order of each column. Similarly, create a
vertically flipped image. Print your results.

Now, create a “negative” of the image by subtracting each pixel from 255 (here’s an
example of where conversion to double is necessary.) Print the result.

Finally, multiply each pixel of the original image by 1.5, and print the result.

INLAB REPORT:

1. Hand in two flipped images.

2. Hand in the negative image.

3. Hand in the image multiplied by factor of 1.5. What effect did this have?

3 Pixel Distributions

Download house.tif
Download narrow.tif

3.1 Histogram of an Image

The histogram of a digital image shows how its pixel intensities are distributed. The pixel
intensities vary along the horizontal axis, and the number of pixels at each intensity is plotted
vertically, usually as a bar graph. A typical histogram of an 8-bit image is shown in Fig. 2.

Write a simple Matlab function Hist(A) which will plot the histogram of image matrix
A. You may use Matlab’s hist function, however that function requires a vector as input.
An example of using hist to plot a histogram of a matrix would be

x=reshape(A,1,M*N);

hist(x,0:255);

where A is an image, and M and N are the number of rows and columns in A. The reshape

command is creating a row vector out of the image matrix, and the hist command plots a
histogram with bins centered at [0 : 255].

http://engineering.purdue.edu/VISE/ee438L/lab10/data/house.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/narrow.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 4

0 50 100 150 200 250
0

100

200

300

400

500

600

700

pixel intensity

nu
m

be
r

of
 p

ix
el

s

Histogram of an Image

Figure 2: Histogram of an 8-bit image

Download the image file house.tif , and read it into Matlab. Test your Hist function
on the image. Label the axes of the histogram and give it a title.

INLAB REPORT:
Hand in your labeled histogram. Comment on the distribution of the pixel intensities.

3.2 Pointwise Transformations

T1 T2

input gray levels

output gray levels

0 255

255

Figure 3: Pointwise transformation of image

A pointwise transformation is a function that maps pixels from one intensity to another.
An example is shown in Fig. 3. The horizontal axis shows all possible intensities of the
original image, and the vertical axis shows the intensities of the transformed image. This
particular transformation maps the “darker” pixels in the range [0, T1] to a level of zero

http://engineering.purdue.edu/VISE/ee438L/lab10/data/house.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 5

(black), and similarly maps the “lighter” pixels in [T2, 255] to white. Then the pixels in the
range [T1, T2] are “stretched out” to use the full scale of [0, 255]. This can have the effect of
increasing the contrast in an image.

Pointwise transformations will obviously affect the pixel distribution, hence they will
change the shape of the histogram. If a pixel transformation can be described by a one-
to-one function, y = f(x), then it can be shown that the input and output histograms are
approximately related by the following:

Hout(y) ≈
Hin(x)

|f ′(x)|

∣

∣

∣

∣

∣

x=f−1(y)

. (3)

Since x and y need to be integers in (3), the evaluation of x = f−1(y) needs to be rounded
to the nearest integer.

The pixel transformation shown in Fig. 3 is not a one-to-one function. However, equation
(3) still may be used to give insight into the effect of the transformation. Since the regions
[0, T1] and [T2, 255] map to the single points 0 and 255, we might expect “spikes” at the
points 0 and 255 in the output histogram. The region [1, 254] of the output histogram will
be directly related to the input histogram through equation (3).

First, notice from x = f−1(y) that the region [1, 254] of the output is being mapped
from the region [T1, T2] of the input. Then notice that f ′(x) will be a constant scaling
factor throughout the entire region of interest. Therefore, the output histogram should
approximately be a stretched and rescaled version of the input histogram, with possible
spikes at the endpoints.

Write a Matlab function that will perform the pixel transformation shown in Fig. 3. It
should have the syntax

output = pointTrans(input, T1, T2) .

Hints:

• Determine an equation for the graph in Fig. 3, and use this in your function. Notice
you have three input regions to consider. You may want to create a separate function
to apply this equation.

• If your function performs the transformation one pixel at a time, be sure to allocate
the space for the output image at the beginning to speed things up.

Download the image file narrow.tif and read it into Matlab. Display the image, and
compute its histogram. The reason the image appears “washed out” is that it has a narrow
histogram. Print out this picture and its histogram.

Now use your pointTrans function to spread out the histogram using T1 = 70 and T2 =
180. Display the new image and its histogram. (You can open another figure window using
the figure command.) Do you notice a difference in the “quality” of the picture?

http://engineering.purdue.edu/VISE/ee438L/lab10/data/narrow.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 6

INLAB REPORT:

1. Hand in your code for pointTrans.

2. Hand in the original image and its histogram.

3. Hand in the transformed image and its histogram.

4. What qualitative effect did the transformation have on the original image? Do you
observe any negative effects of the transformation?

5. Compare the histograms of the original and transformed images. Why are there zeros
in the output histogram?

4 Gamma(γ) Correction

Download dark.tif

The light intensity generated by a physical device is usually a nonlinear function of the
original signal. For example, a pixel that has a gray level of 200 will not be twice as bright as
a pixel with a level of 100. Almost all computer monitors have a power law response to their
applied voltage. For a typical cathode ray tube (CRT), the brightness of the illuminated
phosphors is approximately equal to the applied voltage raised to a power of 2.5. The
numerical value of this exponent is known as the gamma (γ) of the CRT. Therefore the
power law is expressed as

I = V γ (4)

where I is the pixel intensity and V is the voltage applied to the device.

If we relate equation (4) to the pixel values for an 8-bit image, we get the following
relationship,

y = 255
(

x

255

)γ

(5)

where x is the original pixel value, and y is the pixel intensity as it appears on the display.
This relationship is illustrated in Figure 4.

In order to achieve the correct reproduction of intensity, this nonlinearity must be com-
pensated by a process known as γ correction. Images that are not properly corrected usually
appear too light or too dark. If the value of γ is available, then the correction process consists
of applying the inverse of equation (5). This is a straightforward pixel transformation, as we
discussed in Section 3.2.

Write a Matlab function that will γ correct an image by applying the inverse of equation
(5). The syntax should be

http://engineering.purdue.edu/VISE/ee438L/lab10/data/dark.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 7

0 50 100 150 200 250
0

50

100

150

200

250

Input signal

R
ep

ro
du

ce
d

In
te

ns
ity

Figure 4: Nonlinear behavior of a display device having a γ of 2.2.

B = gammCorr(A,gamma)

where A is the uncorrected image, gamma is the γ of the device, and B is the corrected
image. (See the hints in Section 3.2.)

The file dark.tif is an image that has not been γ corrected for your monitor. Download
this image, and read it into Matlab. Display it and observe the quality of the image.

Assume that the γ for your monitor is 2.2. Use your gammCorr function to correct the
image for your monitor, and display the resultant image. Did it improve the quality of the
picture?

INLAB REPORT:

1. Hand in your code for gammCorr.

2. Hand in the γ corrected image.

3. How did the correction affect the image? Does this appear to be the correct value for
γ ?

5 Image Enhancement Based on Filtering

Sometimes, we need to process images to improve their appearance. In this section, we will
discuss two fundamental image enhancement techniques: image smoothing and sharpening.

5.1 Image Smoothing

Smoothing operations are used primarily for diminishing spurious effects that may be
present in a digital image, possibly as a result of a poor sampling system or a noisy trans-

http://engineering.purdue.edu/VISE/ee438L/lab10/data/dark.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 8

mission channel. Lowpass filtering is a popular technique of image smoothing.

Some filters can be represented as a 2-D convolution of an image f(i, j) with the filter’s
impulse response h(i, j).

g(i, j) = f(i, j) ∗ ∗ h(i, j) (6)

=
∞
∑

k=−∞

∞
∑

l=−∞

f(k, l)h(i − k, j − l)

Some typical lowpass filter impulse responses are shown in Fig. 5, where the center element
corresponds to h(0, 0). Notice that the terms of each filter sum to one. This prevents
amplification of the DC component of the original image. The frequency response of each of
these filters is shown in Fig. 6.

1 1 1

1 1 1

1 1 1

1
9

•

1 1 1

1 2 1

1 1 1

1
10

•

1 2 1

2 4 2

1 2 1

1
16

•

(a) (b) (c)

Figure 5: Impulse responses of lowpass filters useful for image smoothing.

An example of image smoothing is shown in Fig. 7, where the degraded image is processed
by the filter shown in Fig. 5(c). It can be seen that lowpass filtering clearly reduces the
additive noise, but at the same time it blurs the image. Hence, blurring is a major limitation
of lowpass filtering.

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

ω
x

ω
y

|H(ω
x
,ω

y
)|

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

ω
x

ω
y

|H(ω
x
,ω

y
)|

−4
−2

0
2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

ω
x

ω
y

|H(ω
x
,ω

y
)|

(a) (b) (c)

Figure 6: Frequency responses of the lowpass filters shown in Fig. 5

In addition to the above linear filtering techniques, images can be smoothed by nonlinear

filtering, such as mathematical morphological processing. Median filtering is one of the
simplest morphological techniques, and is useful in the reduction of impulsive noise. The
main advantage of this type of filter is that it can reduce noise while preserving the detail
of the original image. In a median filter, each input pixel is replaced by the median of the
pixels contained in a surrounding window. This can be expressed by

g(i, j) = median{f(i − k, j − l)}, (k, l) ∈ W (7)

where W is a suitably chosen window. Figure 8 shows the performance of the median filter
in reducing so-called “salt and pepper” noise.

Purdue University: ECE438 - Digital Signal Processing with Applications 9

(a)

(b) (c)

Figure 7: (a) Original gray scale image. (b) Original image degraded by additive white
Gaussian noise, N(0, 0.01). (c) Result of processing the degraded image with a lowpass
filter.

5.2 Smoothing Exercise

Download race.tif
Download noise1.tif
Download noise2.tif

Help on mesh command

Among the many spatial lowpass filters, the Gaussian filter is of particular importance.
This is because it results in very good spatial and spectral localization characteristics. The
Gaussian filter has the form

h(i, j) = C exp(−
i2 + j2

2σ2
) (8)

where σ2, known as the variance, determines the size of passband area. Usually the Gaus-
sian filter is normalized by a scaling constant C such that the sum of the filter coefficient

http://engineering.purdue.edu/VISE/ee438L/lab10/data/race.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/noise1.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/noise2.zip
http://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/mesh.pdf

Purdue University: ECE438 - Digital Signal Processing with Applications 10

(a) (b)

Figure 8: (a) Image degraded by “salt and pepper” noise with 0.05 noise density. (b) Result
of 3 × 3 median filtering.

magnitudes is one, allowing the average intensity of the image to be preserved.

∑

i,j

h(i, j) = 1

Write a Matlab function that will create a normalized Gaussian filter that is centered
around the origin (the center element of your matrix should be h(0, 0)). Note that this filter
is both separable and symmetric, meaning h(i, j) = h(i)h(j) and h(i) = h(−i). Use the
syntax

h=gaussFilter(N, var)

where N determines the size of filter, var is the variance, and h is the N×N filter. Notice that
for this filter to be symmetrically centered around zero, N will need to be an odd number.

Use Matlab to compute the frequency response of a 7 × 7 Gaussian filter with σ2 = 1.
Use the command

H = fftshift(fft2(h,32,32));

to get a 32 × 32 DFT. Plot the magnitude of the frequency response of the Gaussian filter,
|HGauss(ω1, ω2)|, using the mesh command. Plot it over the region [−π, π] × [−π, π], and
label the axes.

Filter the image contained in the file race.tif with a 7× 7 Gaussian filter, with σ2 = 1.
Hint: You can filter the signal by using the Matlab command

Y = filter2(h, X);

where X is the matrix containing the input image and h is the impulse response of the filter.
Display the original and the filtered images, and notice the blurring that the filter has caused.

Now write a Matlab function to implement a 3 × 3 median filter (without using the
medfilt2 command). Use the syntax

Y = medianFilter(X);

where X and Y are the input and output image matrices, respectively. For convenience, you
do not have to alter the pixels on the border of X.

Hint: Use the Matlab command median to find the median value of a subarea of the image,

http://engineering.purdue.edu/VISE/ee438L/lab10/data/race.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 11

i.e. a 3 × 3 window surrounding each pixel.

Download the image files noise1.tif and noise2.tif . These images are versions of
race.tif that have been degraded by additive white Gaussian noise and “salt and pepper”
noise, respectively. Read them into Matlab, and display them using image. Filter each of
the noisy images with both the 7 × 7 Gaussian filter (σ2 = 1) and the 3 × 3 median filter.
Display the results of the filtering, and place a title on each figure. (You can open several
figure windows using the figure command.) Compare the filtered images with the original
noisy images. Print out the four filtered pictures.

INLAB REPORT:

1. Hand in your code for gaussFilter and medianFilter.

2. Hand in the plot of |HGauss(ω1, ω2)|.

3. Hand in the results of filtering the noisy images (4 pictures).

4. Discuss the effectiveness of each filter for the case of additive white Gaussian noise.
Discuss both positive and negative effects that you observe for each filter.

5. Discuss the effectiveness of each filter for the case of “salt & pepper” noise. Again,
discuss both positive and negative effects that you observe for each filter.

5.3 Image Sharpening

Image sharpening techniques are used primarily to enhance an image by highlighting details.
Since fine details of an image are the main contributors to its high frequency content, highpass
filtering often increases the local contrast and sharpens the image. Some typical highpass
filter impulse responses used for contrast enhancement are shown in Fig. 9. The frequency
response of each of these filters is shown in Figure 10.

0 1 0

1 -4 1

0 1 0

1 1 1

1 -8 1

1 1 1

-1 2 -1

2 -4 2

-1 2 -1

(a) (b) (c)

Figure 9: Impulse responses of highpass filters useful for image sharpening.

An example of highpass filtering is illustrated in Fig. 11. It should be noted from this
example that the processed image has enhanced contrast, however it appears more noisy
than the original image. Since noise will usually contribute to the high frequency content of
an image, highpass filtering has the undesirable effect of accentuating the noise.

http://engineering.purdue.edu/VISE/ee438L/lab10/data/noise1.zip
http://engineering.purdue.edu/VISE/ee438L/lab10/data/noise2.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 12

−4
−2

0
2

4

−4

−2

0

2

4
0

2

4

6

8

ω
x

ω
y

|H(ω
x
,ω

y
)|

−4
−2

0
2

4

−4

−2

0

2

4
0

2

4

6

8

10

12

14

ω
x

ω
y

|H(ω
x
,ω

y
)|

−4
−2

0
2

4

−4

−2

0

2

4
0

5

10

15

ω
x

ω
y

|H(ω
x
,ω

y
)|

(a) (b) (c)

Figure 10: Frequency responses of the highpass filters shown in Fig. 9.

(a) (b)

Figure 11: (a) Original gray scale image. (b) Highpass filtered image.

5.4 Sharpening Exercise

Download blur.tif

In this section, we will introduce a sharpening filter known as an unsharp mask. This
type of filter subtracts out the “unsharp” (low frequency) components of the image, and
consequently produces an image with a sharper appearance. Thus, the unsharp mask is
closely related to highpass filtering. The process of unsharp masking an image f(i, j) can be
expressed by

g(i, j) = αf(i, j) − β[f(i, j) ∗ ∗ h(i, j)] (9)

where h(i, j) is a lowpass filter, and α and β are positive constants such that α − β = 1.

Analytically calculate the frequency response of the unsharp mask filter in terms of α,
β, and h(i, j) by finding an expression for

G(ω1, ω2)

F (ω1, ω2)
. (10)

http://engineering.purdue.edu/VISE/ee438L/lab10/data/blur.zip

Purdue University: ECE438 - Digital Signal Processing with Applications 13

Using your gaussFilter function from Section 5.2, create a 5 × 5 Gaussian filter with
σ2 = 1. Use Matlab to compute the frequency response of an unsharp mask filter (use your
expression for equation (10)), using the Gaussian filter as h(i, j), α = 5 and β = 4. The size
of the calculated frequency response should be 32× 32. Plot the magnitude of this response
in the range [−π, π] × [−π, π] using mesh, and label the axes. You can change the viewing
angle of the mesh plot with the view command. Print out this response.

Download the image file blur.tif and read it into Matlab. Apply the unsharp mask
filter with the parameters specified above to this image, using equation (9). Use image to
view the original and processed images. What effect did the filtering have on the image?
Label the processed image and print it out.

Now try applying the filter to blur.tif, using α = 10 and β = 9. Compare this result to
the previous one. Label the processed image and print it out.

INLAB REPORT:

1. Hand in your derivation for the frequency response of the unsharp mask.

2. Hand in the labeled plot of the magnitude response. Compare this plot to the highpass
responses of Fig. 10. In what ways is it similar to these frequency responses?

3. Hand in the two processed images.

4. Describe any positive and negative effects of the filtering that you observe. Discuss the
influence of the α and β parameters.

http://engineering.purdue.edu/VISE/ee438L/lab10/data/blur.zip

